Novel Fisher discriminant classifiers
نویسندگان
چکیده
At the present, several applications need to classify high dimensional points belonging to highly unbalanced classes. Unfortunately, when the training set cardinality is small compared to the data dimensionality (‘‘small sample size’’ problem) the classification performance of several well-known classifiers strongly decreases. Similarly, the classification accuracy of several discriminative methods decreases when non-linearly separable, and unbalanced, classes are treated. In this paper we firstly survey state of the art methods that employ improved versions of Linear Discriminant Analysis (LDA) to deal with the above mentioned problems; secondly, we propose a family of classifiers based on the Fisher subspace estimation, which efficiently deal with the small sample size problem, non-linearly separable classes, and unbalanced classes. The promising results obtained by the proposed techniques on benchmark datasets and the comparison with state of the art predictors show the efficacy of the proposed techniques. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals
We develop several kernel methods for classification of longitudinal data and apply them to detect cognitive decline in the elderly. We first develop mixed-effects models, a type of hierarchical empirical Bayes generative models, for the time series. After demonstrating their utility in likelihood ratio classifiers (and the improvement over standard regression models for such classifiers), we d...
متن کاملClassification in the Presence of Class Noise
Abstract In machine learning, class noise occurs frequently and deteriorates the classifier derived from the noisy dataset. This paper presents several possible solutions to this problem based on LSA, a probabilistic noise model proposed by Lawrence and Schölkopf (2001). These solutions include the Clustering-based Probabilistic Algorithm (CPA), the Probabilistic Fisher (PF), and the Probabilis...
متن کاملEfficient cross-validation of kernel fisher discriminant classifiers
Mika et al. [1] introduce a non-linear formulation of the Fisher discriminant based the well-known “kernel trick”, later shown to be equivalent to the Least-Squares Support Vector Machine [2, 3]. In this paper, we show that the cross-validation error can be computed very efficiently for this class of kernel machine, specifically that leave-one-out cross-validation can be performed with a comput...
متن کاملEfficient leave-one-out cross-validation of kernel fisher discriminant classifiers
Mika et al. [1] apply the “kernel trick” to obtain a non-linear variant of Fisher’s linear discriminant analysis method, demonstrating state-of-the-art performance on a range of benchmark datasets. We show that leave-one-out cross-validation of kernel Fisher discriminant classifiers can be implemented with a computational complexity of only O(l3) operations rather than the O(l4) of a näıve impl...
متن کاملClassification of Electroencephalographic Changes in Meditation and Rest: using Correlation Dimension and Wavelet Coefficients
Meditation is a practice of concentrated focus upon the breath in order to still the mind. In this paper we have investigated an algorithm to classify rest and meditation, by processing of electroencephalogram (EEG) signals through the Wavelet and nonlinear methods. For this purpose, two types of EEG time series (before, and during meditation) of 25 healthy women are collected in the meditation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012